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Abstract. Human action recognition from well-segmented 3D skeleton
data has been intensively studied and has been attracting an increasing
attention. Online action detection goes one step further and is more chal-
lenging, which identifies the action type and localizes the action positions
on the fly from the untrimmed stream data. In this paper, we study the
problem of online action detection from streaming skeleton data. We pro-
pose a multi-task end-to-end Joint Classification-Regression Recurrent
Neural Network to better explore the action type and temporal localiza-
tion information. By employing a joint classification and regression opti-
mization objective, this network is capable of automatically localizing the
start and end points of actions more accurately. Specifically, by leveraging
the merits of the deep Long Short-Term Memory (LSTM) subnetwork,
the proposed model automatically captures the complex long-range tem-
poral dynamics, which naturally avoids the typical sliding window design
and thus ensures high computational efficiency. Furthermore, the sub-
task of regression optimization provides the ability to forecast the action
prior to its occurrence. To evaluate our proposed model, we build a large
streaming video dataset with annotations. Experimental results on our
dataset and the public G3D dataset both demonstrate very promising
performance of our scheme.
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1 Introduction

Human action detection is an important problem in computer vision, which has
broad practical applications like visual surveillance, human-computer interaction
and intelligent robot navigation. Unlike action recognition and offline action
detection, which determine the action after it is fully observed, online action
detection aims to detect the action on the fly, as early as possible. It is much
desirable to accurately and timely localize the start point and end point of an
action along the time and determine the action type as illustrated in Fig. 1.
Besides, it is also desirable to forecast the start and end of the actions prior to
their occurrence. For example, for intelligent robot system, in addition to the
accurate detection of actions, it would also be appreciated if it can predict the
start of the impending action or the end of the ongoing actions and then get
something ready for the person it serves, e.g., passing towels when he/she finishes
washing hands. Therefore, the detection and forecast system could respond to
impending or ongoing events accurately and as soon as possible, to provide better
user experiences.

For human action recognition and detection, many research works have been
designed for RGB videos recorded by 2D cameras in the past couple of decades
[1]. In recent years, with the prevalence of the affordable color-depth sensing cam-
eras, such as the Microsoft Kinect [2], it is much easier and cheaper to obtain
depth data and thus the 3D skeleton of human body (see skeleton examples in
Fig. 1). Biological observations suggest that skeleton, as an intrinsic high level
representation, is very valuable information for recognizing actions by humans
[3]. In comparison to RGB video, such high level human representation by skele-
ton is robust to illumination and clustered background [4], but may not be
appropriate for recognizing fine-grained actions with marginal differences. Tak-
ing the advantages of skeleton representation, in this paper, we investigate skele-
ton based human action detection. The addition of RGB information may result
in better performance and will be addressed in the future work.

… … … … …
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Action type: "opening microwave"
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Fig. 1. Illustration of online action detection. It aims to determine the action type and
the localization on the fly. It is also desirable to forecast the start and end points (e.g.,
T frames ahead).

Although online action detection is of great importance, there are very
few works specially designed for it [5,6]. Moreover, efficient exploitation of the
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advanced recurrent neural network (RNN) has not been well studied for the effi-
cient temporal localization of actions. Most published methods are designed for
offline detection [7], which performs detection after fully observing the sequence.
To localize the action, most of previous works employ a sliding window design
[5,8–10], which divides the sequence into overlapped clips before action recog-
nition/classification is performed on each clip. Such sliding window design has
low computational efficiency. A method that divides the continuous sequence
into short clips with the shot boundary detected by computing the color his-
togram and motion histogram was proposed in [11]. However, indirect modeling
of action localization in such an unsupervised manner does not provide satisfac-
tory performance. An algorithm which can intelligently localize the actions on
the fly is much expected, being suitable for the streaming sequence with actions
of uncertain length. For action recognition on a segmented clip, deep learning
methods, such as convolutional neural networks and recurrent neural networks,
have been shown to have superior performances on feature representation and
temporal dynamics modeling [12–15]. However, how to design an efficient online
action detection system that leverages the neural network for the untrimmed
streaming data is not well studied.
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FC Layer

LSTM Layer

FC Layer

LSTM Layer

Deep LSTM Network
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FC2
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Selector
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Confidence
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Fig. 2. Architecture of the proposed joint classification-regression RNN framework for
online action detection and forecasting.

In this paper, we propose a Joint Classification-Regression Recurrent Neural
Network to accurately detect the actions and localize the start and end positions
of the actions on the fly from the streaming data. Figure 2 shows the architecture
of the proposed framework. Specifically, we use LSTM [16] as the recurrent
layers to perform automatic feature learning and long-range temporal dynamics
modeling. Our network is end-to-end trainable by optimizing a joint objective
function of frame-wise action classification and temporal localization regression.
On one hand, we perform frame-wise action classification, which aims to detect
the actions timely. On the other hand, to better localize the start and end of
actions, we incorporate the regression of the start and end points of actions into
the network. We can forecast their occurrences in advance based on the regressed
curve. We train this classification and regression network jointly to obtain high
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detection accuracy. Note that the detection is performed frame-by-frame and
the temporal information is automatically learnt by the deep LSTM network
without requiring a sliding window design, which is time efficient.

The main contributions of this paper are summarized as follows:

– We investigate the new problem of online action detection for streaming skele-
ton data by leveraging recurrent neural network.

– We propose an end-to-end Joint Classification-Regression RNN to address our
target problem. Our method leverages the advantages of RNNs for frame-wise
action detection and forecasting without requiring a sliding window design
and explicit looking forward or backward.

– We build a large action dataset for the task of online action detection from
streaming sequence.

2 Related Work

2.1 Action Recognition and Action Detection

Action recognition and detection have attracted a lot of research interests in
recent years. Most methods are designed for action recognition [13,14,17], i.e.,
to recognize the action type from a well-segmented sequence, or offline action
detection [8,10,18,19]. However, in many applications it is desirable to recog-
nize the action on the fly, without waiting for the completion of the action, e.g.,
in human computer interaction to reduce the response delay. In [5], a learning
formulation based on a structural SVM is proposed to recognize partial events,
enabling early detection. To reduce the observational latency of human action
recognition, a non-parametric moving pose framework [6] and a dynamic integral
bag-of-words approach [20] are proposed respectively to detect actions earlier.
Our model goes beyond early detection. Besides providing frame-wise class infor-
mation, it forecasts the occurrence of start and end of actions.

To localize actions in streaming video sequence, existing detection meth-
ods utilize either sliding-window scheme [5,8–10], or action proposal approaches
[11,21,22]. These methods usually have low computational efficiency or unsat-
isfactory localization accuracy due to the overlapping design and unsupervised
localization approach. Besides, it is not easy to determine the sliding-window
size.

Our framework aims to address the online action detection in such a way that
it can predict the action at each time slot efficiently without requiring a sliding
window design. We use the regression design to determine the start/end points
learned in a supervised manner during the training, enabling the localization
being more accurate. Furthermore, it forecasts the start of the impending or end
of the ongoing actions.

2.2 Deep Learning

Recently, deep learning has been exploited for action recognition [17]. Instead
of using hand-crafted features, deep learning can automatically learn robust
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feature representations from raw data. To model temporal dynamics, RNNs have
also been used for action recognition. A Long-term Recurrent Convolutional
Network (LRCN) [13] is proposed for activity recognition, where the LRCN
model contains several Convolutional Neural Network (CNN) layers to extract
visual features followed by LSTM layers to handle temporal dynamics. A hybrid
deep learning framework is proposed for video classification [12], where LSTM
networks are applied on top of the two types of CNN-based features related to the
spatial and the short-term motion information. For skeleton data, hierarchical
RNN [14] and fully connected LSTM [15] are investigated to model the temporal
dynamics for skeleton based action recognition.

Despite a lot of efforts in action recognition, which uses pre-segmented
sequences, there are few works on applying RNNs for the action detection and
forecasting tasks. Motivated by the advantages of RNNs in sequence learning
and some other online detection tasks (e.g. audio onset [23] and driver distrac-
tion [24] detection), we propose a Joint Classification and Regression RNN to
automatically localize the action location and determine the action type on the
fly. In our framework, the designed LSTM network simultaneously plays the role
of feature extraction and temporal dynamic modeling. Thanks to the long-short
term memorizing function of LSTM, we do not need to assign an observation
window as in the sliding window based approaches for the action type determi-
nation and avoid the repeat calculation. This enables our design to have superior
detection performance with low computation complexity.

3 Problem Formulation

In this section, we formulate the online action detection problem. To help clarify
the differences, offline action detection is first discussed.

3.1 Offline Action Detection

Given a video observation V = {v0, . . . , vN−1} composed of frames from time 0
to N −1, the goal of action detection is to determine whether a frame vt at time
t belongs to an action among the predefined M action classes.

Without loss of generality, the target classes for the frame vt are denoted
by a label vector yt ∈ R1×(M+1), where yt,j = 1 means the presence of an
action of class j at this frame and yt,j = 0 means absence of this action. Besides
the M classes of actions, a blank class is added to represent the situation in
which the current frame does not belong to any predefined actions. Since the
entire sequence is known, the determination of the classes at each time slot is to
maximize the posterior probability

y∗
t = argmax

yt

P (yt|V ), (1)

where yt is the possible action label vector for frame vt. Therefore, conditioned
on the entire sequence V , the action label with the maximum probability P (yt|V )
is chosen to be the status of frame vt in the sequence.
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According to the action label of each frame, an occurring action i can be
represented in the form di = {gi, ti,start, ti,end}, where gi denotes the class type
of the action i, ti,start and ti,end correspond to the starting and ending time of
the action, respectively.

3.2 Online Action Detection

In contrast to offline action detection, which makes use of the whole video to
make decisions, online detection is required to determine which actions the cur-
rent frame belongs to without using future information. Thus, the method must
automatically estimate the start time and status of the current action. The prob-
lem can be formulated as

y∗
t = argmax

yt

P (yt|v0, ..., vt). (2)

Besides determining the action label, an online action detection system for
streaming data is also expected to predict the starting and ending time of an
action. We should be aware of the occurrence of the action as early as possible
and be able to predict the end of the action. For example, for an action di =
{gi, ti,start, ti,end}, the system is expected to forecast the start and end of the
action during [ti,start − T, ti,start] and [ti,end − T, ti,end], respectively, ahead its
occurrence. T could be considered as the expected forecasting time in statistic.
We define the optimization problem as

(y∗
t ,a∗

t ,b
∗
t ) = argmax

yt,at,bt

P (yt,at,bt|v0, . . . , vt), (3)

where at and bt are two vectors, denoting whether actions are to start or to
stop within the following T frames, respectively. For example, at,gi

= 1 means
the action of class gi will start within T frames.

4 Joint Classification-Regression RNN for Online Action
Detection

We propose an end-to-end Joint Classification-Regression framework based on
RNN to address the online action detection problem. Figure 2 shows the archi-
tecture of the proposed network, which has a shared deep LSTM network for
feature extraction and temporal dynamic modeling, a classification subnetwork
and a regression subnetwork. Note that we construct the deep LSTM network
by stacking three LSTM layers and three non-linear fully-connected (FC) layers
to have powerful learning capability. We first train the classification network for
the frame-wise action classification. Then under the guidance of the classification
results through the Soft Selector, we train the regressor to obtain more accurate
localization of the start and end time points.

In the following, we first briefly review the RNNs and LSTM to make
the paper self-contained. Then we introduce our proposed joint classification-
regression network for online action detection.



Online Human Action Detection Using Joint Classification-Regression RNNs 209

tanh tanh

Input gate Output gate

Cell

Forget gate

Output

Input

Fig. 3. The structure of an LSTM neu-
ron, which contains an input gate it, a
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Fig. 4. Illustration of the confidence
values around the start point and
end point, which follow Gaussian-like
curves with the confidence value 1 at
the start and end point.

4.1 Overview of RNN and LSTM

In contrast to traditional feedforward neural networks, RNNs have self-connected
recurrent connections which model the temporal evolution. The output response
ht of a recurrent hidden layer can be formulated as follows [25]

ht = θh(Wxhxt + Whhht−1 + bh), (4)

where Wxh and Whh are mapping matrices from the current inputs xt to the
hidden layer h and the hidden layer to itself. bh denotes the bias vector. θh is
the activation function in the hidden layer.

The above RNNs have difficulty in learning long range dependencies [26], due
to the vanishing gradient effect. To overcome this limitation, recurrent neural
networks using LSTM [14,16,25] has been designed to mitigate the vanishing
gradient problem and learn the long-range contextual information of a temporal
sequence. Figure 3 illustrates a typical LSTM neuron. In addition to a hidden
output ht, an LSTM neuron contains an input gate it, a forget gate ft, a memory
cell ct, and an output gate ot. At each timestep, it can choose to read, write or
reset the memory cell through the three gates. This strategy allows LSTM to
memorize and access information many timesteps ago.

4.2 Subnetwork for Classification Task

We first train an end-to-end classification subnetwork for frame-wise action
recognition. The structure of this classification subnetwork is shown in the upper
part of Fig. 2. The frame first goes through the deep LSTM network, which is
responsible for modeling the spatial structure and temporal dynamics. Then a
fully-connected layer FC1 and a SoftMax layer are added for the classification
of the current frame. The output of the SoftMax layer is the probability distri-
bution of the action classes yt. Following the problem formulation as described
in Sect. 3, the objective function of this classification task is to minimize the
cross-entropy loss function
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Lc(V ) = − 1
N

N−1∑

t=0

M∑

k=0

zt,k ln P (yt,k|v0, . . . vt), (5)

where zt,k corresponds to the groundtruth label of frame vt for class k, zt,k =
1 means the groundtruth class is the kth class, P (yt,k|v0, . . . vt) denotes the
estimated probability of being action classes k of frame vt.

We train this network with Back Propagation Through Time (BPTT) [27]
and use stochastic gradient descent with momentum to compute the derivatives
of the objective function with respect to all parameters. To prevent over-fitting,
we have utilized dropout at the three fully-connected layers.

4.3 Joint Classification and Regression

We fine-tune this network on the initialized classification model by jointly opti-
mizing the classification and regression. Inspired by the Joint Classification-
Regression models used in Random Forest [28,29] for other tasks (e.g. segmen-
tation [28] and object detection [29]), we propose our Joint learning to simulta-
neously make frame-wise classification, localize the start and end time points of
actions, and to forecast them.

We define a confidence factor for each frame to measure the possibility of
the current frame to be the start or end point of some action. To better localize
the start or end point, we use a Gaussian-like curve to describe the confidences,
which centralizes at the actual start (or end) point as illustrated in Fig. 4. Taking
the start point as an example, the confidence of the frame vt with respect to the
start point of action j is defined as

cs
t = e−(t−sj)

2/2σ2
, (6)

where sj is the start point of the nearest (along time) action j to the frame vt,
and σ is the parameter which controls the shape of the confidence curve. Note
that at the start point time, i.e., t = sj , the confidence value is 1. Similarly,
we denote the confidence of being the end point of one action as ce

t . For the
Gaussian-like curve, a lower confidence value suggests the current frame has
larger distance from the start point and the peak point indicates the start point.

Such design has two benefits. First, it is easy to localize the start/end point
by checking the regressed peak points. Second, this makes the designed system
have the ability of forecasting. We can forecast the start (or end) of actions
according to the current confidence response. We set a confidence threshold θs

(or θe) according to the sensitivity requirement of the system to predict the
start (or end) point. When the current confidence value is larger than θs (or θe),
we consider that one action may start (or end) soon. Usually, larger threshold
corresponds to a later response but a more accurate forecast.

Using the confidence as the target values, we include this regression prob-
lem as another task in our RNN model, as shown in the lower part of Fig. 2.
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This regression subnetwork consists of a non-linear fully-connected layer FC2, a
Soft Selector layer, and a non-linear fully-connected layer FC3. Since we regress
one type of confidence values for all the start points of different actions, we
need to use the output of the action classification to guide the regression task.
Therefore, we design a Soft Selector module to generate more specific features
by fusing the output of SoftMax layer which describes the probabilities of clas-
sification together with the output of the FC2 layer.

We achieve this by using class specific element-wise multiplication of the out-
puts of SoftMax and FC2 layer. The information from the SoftMax layer for the
classification task plays the role of class-based feature selection over the out-
put features of FC2 for the regression task. A simplified illustration about the
Soft Selector model is shown in Fig. 5. Assume we have 5 action classes and the
dimension of the FC2 layer output is reshaped to 7× 5. The vector (marked by
circles) with the dimension of 5 from the SoftMax output denotes the probabil-
ities of the current frame belonging to the 5 classes respectively. Element-wise
multiplication is performed for each row of features and then integrating the
SoftMax output plays the role of feature selection for different classes.

The final objective function of the Joint Classification-Regression is formu-
lated as

L(V ) =Lc(V ) + λLr(V )

= − 1
N

N−1∑

t=0

[( M∑

k=0

zt,k ln P (yt,k|v0, . . . vt)
)

+ λ ·
(

�(cs
t , p

s
t ) + �(ce

t , p
e
t )

)]
,

(7)

where ps
t and pe

t are the predicted confidence values as start and end points, λ
is the weight for the regression task, � is the regression loss function, which is
defined as �(x, y) = (x − y)2. In the training, the overall loss is a summarization
of the loss from each frame vt, where 0 ≤ t < N . For a frame vt, its loss consists
of the classification loss represented by the cross-entropy for the M + 1 classes
and the regression loss for identifying the start and end of the nearest action.

Multiply

=

0.40 -0.24 0.56 0.08 0.48 -0.08 -0.72 
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FC2 output features Output features

0.8

0.1

Class 
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Fig. 5. Soft Selector for the fusion of classification output and features from FC2.
Element-wise multiplication is performed for each row of features (we only show the
first two rows here).
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We fine-tune this entire network over the initialized classification model by
minimizing the object function of the joint classification and regression opti-
mization. Note that to enable the classification result indicating which action
will begin soon, we set the groundtruth label zs

t,k = 1 in the training where
tk,start − T ≤ t < tk,start for all actions, according to the expected forecast-
forward value T as defined in Sect. 3. Then, for each frame, the classification
output indicates the impending or ongoing action class while the two confidence
outputs show the probability to be the start or end point. We set the peak posi-
tions of confidences to be the predicted action start (or end) time. Note that since
the classification and regression results of the current frame are correlated with
the current input and the previous memorized information for the LSTM net-
work, the system does not need to explicitly look back, avoiding sliding window
design.

5 Experiments

In this section, we evaluate the detection and forecast performance of the pro-
posed method on two different skeleton-based datasets. The reason why we
choose skeleton-based datasets for experiments is three-fold. First, skeleton joints
are captured in the full 3D space, which can provide more comprehensive infor-
mation for action detection compared to 2D images. Second, the skeleton joints
can well represent the posture of human which provide accurate positions and
capture human motions. Finally, the dimension of skeleton is low, i.e., 25× 3 =
75 values for each frame from Kinect V2. This makes the skeleton based online
action detection much attractive for real applications.

5.1 Datasets and Settings

Most published RGB-D datasets were generated for the classification task where
actions were already pre-segmented [30,31]. They are only suitable for action
recognition. Thus, besides using an existing skeleton-based detection dataset, the
Gaming Action Dataset (G3D) [32], we collect a new online streaming dataset
following similar rules of previous action recognition datasets, which is much
more appropriate for the online action detection problem. In this work, being
similar to that in [15], the normalization processing on each skeleton frame is
performed to be invariant to position.

Gaming Action Dataset (G3D). The G3D dataset contains 20 gaming
actions captured by Kinect, which are grouped into seven categories, such as
fighting, tennis and golf. Some limitations of this dataset are that the number
and occurrence order of actions in the videos are unchanged and the actors are
motionless between performing different actions, which make the dataset a little
unrealistic.

Online Action Detection Dataset (OAD). This is our newly collected
action dataset with long sequences for our online action detection problem.
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The dataset was captured using the Kinect v2 sensor, which collects color
images, depth images and human skeleton joints synchronously. It was captured
in a daily-life indoor environment. Different actors freely performed 10 actions,
including drinking, eating, writing, opening cupboard, washing hands, opening
microwave, sweeping, gargling, throwing trash, and wiping. We collected 59 long
video sequences at 8 fps (in total 103,347 frames of 216 min). Note that our low
recording frame rate is due to the speed limitation of writing large amount of
data (i.e., skeleton, high resolution RGB-D) to the disk of our laptop.

Since the Kinect v2 sensor is capable of providing more accurate depth,
our dataset has more accurate tracked skeleton positions compared to previous
skeleton datasets. In addition, the acting orders and duration of the actions are
arbitrary, which approach the real-life scenarios. The length of each sequence
is very long and there are variable idle periods between different actions, which
meets the requirements of realistic online action detection from streaming videos.

Network and Parameter Settings. We show the architecture of our network
in Fig. 2. The number of neurons in the deep LSTM network is 100, 100, 110,
110, 100, 100 for the first six layers respectively, including three LSTM layers and
three FC layers. The design choice (i.e., LSTM architecture) is motivated by some
previous works [14,15]. The number of neurons in the FC1 layer corresponds to
the number of action classes M + 1 and the number of neurons in the FC2 layer
is set to 10 × (M + 1). For the FC3 layer, there are two neurons corresponding
to the start and end confidences respectively. The forecast response threshold T
can be set based on the requirement of the applications. In this paper, we set
T = 10 (around one second) for the following experiments. The parameter σ in
(6) is set to 5. The weight λ in the final loss function (7) is increased gradually
from 0 to 10 during the fine-tuning of the entire network. Note that we use the
same parameter settings for both OAD and G3D datasets.

For our OAD dataset, we randomly select 30 sequences for training and 20
sequences for testing. The remaining 9 long videos are used for the evaluation of
the running speed. For the G3D dataset, we use the same setting as used in [32].

5.2 Action Detection Performance Evaluation

Evaluation Criterions. We use three different evaluation protocols to measure
the detection results.

1. F1-Score. Similar to the protocols used in object detection from images [33],
we define a criterion to determine a correct detection. A detection is correct
when the overlapping ratio α between the predicted action interval I and the
groundtruth interval I∗ exceeds a threshold, e.g., 60%. α is defined as

α =
|I ∩ I∗|
|I ∪ I∗| , (8)

where I ∩ I∗ denotes the intersection of the predicted and groundtruth inter-
vals and I ∪ I∗ denotes their union. With the above criterion to determine a
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correction detection, the F1-Score is defined as

F1 = 2
Precision ∗ Recall

Precision + Recall
. (9)

2. SL-Score. To evaluate the accuracy of the localization of the start point for
an action, we define a Start Localization Score (SL-Score) based on the rela-
tive distance between the predicted and the groundtruth start time. Suppose
that the detector predicts that an action will start at time t and the corre-
sponding groundtruth action interval is [tstart, tend], the score is calculated as
e−|t−tstart|/(tend−tstart). For false positive or false negative samples, the score
is set to 0.

3. EL-Score. Similarly, the End Localization Score (EL-Score) is defined based
on the relative distance between the predicted and the groundtruth end time.

Baselines. We have implemented several baselines for comparison to evaluate
the performance of our proposed Joint Classification-Regression RNN model
(JCR-RNN), (i) SVM-SW. We train a SVM detector to detect the action with
sliding window design (SW). (ii) RNN-SW. This is based on the baseline method
Deep LSTM in [15], which employs a deep LSTM network that achieves good
results on many skeleton-based action recognition datasets. We train the clas-
sifiers and perform the detection based on sliding window design. We set the
window size to 10 with step of 5 for both RNN-SW and SVM-SW. We experi-
mentally tried different window sizes and found 10 gives relatively good average
performance. (iii) CA-RNN. This is a degenerated version of our model that only
consists of the LSTM and classification network, without the regression network
involved. We denote it as Classification Alone RNN model (CA-RNN).

Dectection Performance. Table 1 shows the F1-Score of each action class
and the average F1-Score of all actions on our OAD Dataset. From Table 1,

Table 1. F1-Score on OAD dataset.

Actions SVM-SW RNN-SW [15] CA-RNN JCR-RNN

Drinking 0.146 0.441 0.584 0.574

Eating 0.465 0.550 0.558 0.523

Writing 0.645 0.859 0.749 0.822

Opening cupboard 0.308 0.321 0.490 0.495

Washing hands 0.562 0.668 0.672 0.718

Opening microwave 0.607 0.665 0.468 0.703

Sweeping 0.461 0.590 0.597 0.643

Gargling 0.437 0.550 0.579 0.623

Throwing trash 0.554 0.674 0.430 0.459

Wiping 0.857 0.747 0.761 0.780

Average 0.540 0.600 0.596 0.653
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we have the following observations. (i) The RNN-SW method achieves 6 % higher
F1-Score than the SVM-SW method. This demonstrates that RNNs can better
model the temporal dynamics. (ii) Our JCR-RNN outperforms the RNN-SW
method by 5.3 %. Despite RNN-SW, CA-RNN and JCR-RNN methods all use
RNNs for feature learning, one difference is that our schemes are end-to-end
trainable without the involvement of sliding window. Therefore, the improve-
ments clearly demonstrate that our end-to-end schemes are more efficient than
the classical sliding window scheme. (iii) Our JCR-RNN further improves over
the CA-RNN and achieves the best performance. It can be seen that incorporat-
ing the regression task into the network and jointly optimizing classification-
regression make the localization more accurate and enhance the detection
accuracy.

To further evaluate the localization accuracy, we calculate the SL- and EL-
Scores on the Online Action Dataset. The average scores of all actions are
shown in Table 2. We can see the proposed scheme achieves the best localization
accuracy.

Table 2. SL- and EL-Score on the OAD dataset.

Scores SVM-SW RNN-SW [15] CA-RNN JCR-RNN

SL- 0.316 0.366 0.378 0.418

EL- 0.325 0.376 0.382 0.443

For the G3D dataset, we evaluate the performance in terms of the three types
of scores for the seven categories of sequences. To save space, we only show the
results for the first two categories Fighting and Golf in Tables 3 and 4, and
more results which have the similar trends can be found in the supplementary
material. The results are consistent with the experiments on our own dataset.
We also compare these methods using the evaluation metric action-based F1
as defined in [32], which treats the detection of an action as correct when the
predicted start point is within 4 frames of the groundtruth start point for that
action. Note that the action-based F1 only considers the accuracy of the start
point. The results are shown in Table 5. The method in [32] uses a traditional
boosting algorithm [34] and its scores are significantly lower than other methods.

5.3 Action Forecast Performance Evaluation

Evaluation Criterion. As explained in Sect. 3, the system is expected to fore-
cast whether the action will start or end within T frames prior to its occurrence.
To be considered as a true positive start forecast, the forecast should not only
predict the impending action class, but also do so within a reasonable interval,
i.e., [tstart − T, tstart] for an action starting at tstart. This rule is also applied to
end forecast. We use the Precision-Recall Curve to evaluate the performance of
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Table 3. SL- and EL-Score on the G3D
Dataset.

Action

category

Scores SVM-

SW

RNN-

SW [15]

CA-

RNN

JCR-

RNN

Fighting SL- 0.318 0.412 0.512 0.528

EL- 0.328 0.419 0.525 0.557

Golf SL- 0.553 0.635 0.789 0.793

EL- 0.524 0.656 0.791 0.836

Table 4. F1-Score on G3D.

Action
category

SVM-
SW

RNN-
SW [15]

CA-
RNN

JCR-
RNN

Fighting 0.486 0.613 0.700 0.735

Golf 0.680 0.745 0.900 0.967

Table 5. Action-based F1 [32] on G3D.

Action

category

G3D

[32]

SVM-

SW

RNN-

SW [15]

CA-

RNN

JCR-

RNN

Fighting 58.54 76.72 83.28 94.00 96.18

Golf 11.88 45.00 55.00 50.00 70.00

Table 6. Average running time (sec-
onds per sequence).

SVM-SW RNN-SW [15] JCR-RNN

1.05 3.14 2.60

the action forecast methods. Note that both precision and recall are calculated
on the frame-level for all frames.

Baselines. Since there is no previous method proposed for the action forecast
problem, we use a simple strategy to do the forecast based on the above detec-
tion baseline methods. For SVM-SW, RNN-SW, CA-RNN, they will output the
probability qt,j for each action class j at each time step t. At time t, when the
probability qt,j of action class j is larger than a predefined threshold βs, we
consider that the action of class j will start soon. Similarly, during an ongoing
period of the action of class j, when the probability qt,j is smaller than another
threshold βe, we consider this action to end soon.

Forecast Performance. The peak point of the regressed confidence curve is
considered as the start/end point in the test. When the current confidence value

(a) Forecast of start. (b) Forecast of end.

Fig. 6. The Precision-Recall curves of the start and end time forecast with different
methods on the OAD dataset. Overall JCR-RNN outperforms other baselines by a
large margin. This figure is best seen in color. (Color figure online)
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is higher than θs but ahead of the peak, this frame forecasts that the action
will start soon. By adjusting the confidence thresholds θs and θe in our method,
we draw the Precision-Recall curves for our method. Similarly, we draw the
curves for the baselines by adjusting βs and βe. We show them in Fig. 6. The
performance of the baselines is significantly inferior to our method JCR-RNN.
This suggests that only using the traditional detection probability is not suitable
for forecasting. One important reason is that the frames before the start time
are simply treated as background samples in the baselines but actually they
contain evidences. While in our regression task, we deal with these frames using
different confidence values to guide the network to explore the hidden starting
or ending patterns of actions. In addition, we note that the forecast precision of
all the methods are not very high even though our method is much better, e.g.,
precision is 28% for start forecast and 37% for end forecast when recall is 40%.
This is because the forecast problem itself is a difficult problem. For example,
when a person is writing on the board, it is difficult to forecast whether he will
finish writing soon.

Figure 7 shows the confusion matrix of the start forecast by our proposed
method. This confusion matrix represents the relationships between the pre-
dicted start action class and the groundtruth class. The shown confusion matrix
is obtained when the recall rate equals to 40 %. From this matrix, although there
are some missed or wrong forecasts, most of the forecasts are correct. In addi-
tion, there are a few interesting observations. For example, the action eating and
drinking may have similar poses before they start. Action gargling and wash-
ing hands are also easy to be mixed up when forecasting since the two actions
both need to turn on the tap before starting. Taking into account human-object
interaction should help reduce the ambiguity and we will leave it for future work.

Fig. 7. Confusion Matrix of start forecast on the OAD dataset. Vertical axis:
groundtruth class; Horizontal axis: predicted class.
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5.4 Comparison of Running Speeds

In this section, we compare the running speeds of different methods. Table 6
shows the average running time on 9 long sequences, which has 3200 frames on
average. SVM-SW has the fastest speed because of its small model compared
with the deep learning methods. The RNN-SW runs slower than our methods
due to its sliding window design. We can notice the running speed for the action
detection based on skeleton input is rather fast, being 1230 fps for the JCR-RNN
approach. This is because the dimension of skeleton is low (25 × 3 = 75 values
for each frame) in comparison with RGB input. This makes the skeleton based
online action detection much attractive for real applications.

6 Conclusion and Future Work

In this paper, we propose an end-to-end Joint Classification-Regression RNN to
explore the action type and better localize the start and end points on the fly.
We leverage the merits of the deep LSTM network to capture the complex long-
range temporal dynamics and avoid the typical sliding window design. We first
pretrain the classification network for the frame-wise action classification. Then
with the incorporation of the regression network, our joint model is capable of
not only localizing the start and end time of actions more accurately but also
forecasting their occurrence in advance. Experiments on two datasets demon-
strate the effectiveness of our method. In the future work, we will introduce
more features, such as appearance and human-object interaction information,
into our model to further improve the detection and forecast performance.
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23. Böck, S., Arzt, A., Krebs, F., Schedl, M.: Online real-time onset detection with
recurrent neural networks. In: Proceedings of IEEE International Conference on
Digital Audio Effects (2012)

24. Wollmer, M., Blaschke, C., Schindl, T., Schuller, B., Farber, B., Mayer, S., Trefflich,
B.: Online driver distraction detection using long short-term memory. IEEE Trans.
Intell. Transp. Syst. 12(2), 574–582 (2011)



220 Y. Li et al.

25. Graves, A.: Supervised Sequence Labelling with Recurrent Neural Networks. SCI,
vol. 385. Springer, Heidelberg (2012)

26. Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J.: Gradient flow in recurrent
nets: the difficulty of learning long-term dependencies. In: Kremer, S.C., Kolen, J.F.
(eds.) A Field Guide to Dynamical Recurrent Neural Networks. IEEE Press, Los
Alamitos (2001)

27. Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proc.
IEEE 78(10), 1550–1560 (1990)

28. Glocker, B., Pauly, O., Konukoglu, E., Criminisi, A.: Joint classification-regression
forests for spatially structured multi-object segmentation. In: Fitzgibbon, A.,
Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol.
7575, pp. 870–881. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33765-9 62

29. Schulter, S., Leistner, C., Wohlhart, P., Roth, P.M., Bischof, H.: Accurate object
detection with joint classification-regression random forests. In: Proceedings of
IEEE International Conference on Computer Vision and Pattern Recognition, pp.
923–930 (2014)

30. Li, W., Zhang, Z., Liu, Z.: Action recognition based on a bag of 3D points. In:
Proceedings of IEEE International Conference on Computer Vision and Pattern
Recognition Workshops, pp. 9–14 (2010)

31. Yun, K., Honorio, J., Chattopadhyay, D., Berg, T.L., Samaras, D.: Two-person
interaction detection using body pose features and multiple instance learning. In:
Proceedings of IEEE International Conference on Computer Vision and Pattern
Recognition Workshops, pp. 28–35 (2012)

32. Bloom, V., Makris, D., Argyriou, V.: G3D: a gaming action dataset and real time
action recognition evaluation framework. In: Proceedings of International Confer-
ence on Computer Vision and Pattern Recognition Workshops, pp. 7–12 (2012)

33. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal
visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)

34. Freund, Y., Schapire, R.E., et al.: Experiments with a new boosting algorithm. In:
Proceedings of International Conference on Machine Learning, vol. 96, pp. 148–156
(1996)

http://dx.doi.org/10.1007/978-3-642-33765-9_62

	Online Human Action Detection Using Joint Classification-Regression Recurrent Neural Networks
	1 Introduction
	2 Related Work
	2.1 Action Recognition and Action Detection
	2.2 Deep Learning

	3 Problem Formulation
	3.1 Offline Action Detection
	3.2 Online Action Detection

	4 Joint Classification-Regression RNN for Online Action Detection
	4.1 Overview of RNN and LSTM
	4.2 Subnetwork for Classification Task
	4.3 Joint Classification and Regression

	5 Experiments
	5.1 Datasets and Settings
	5.2 Action Detection Performance Evaluation
	5.3 Action Forecast Performance Evaluation
	5.4 Comparison of Running Speeds

	6 Conclusion and Future Work
	References


